From Fermat to Waring

نویسنده

  • Nico F. Benschop
چکیده

The ring Zk(+, .) mod p k with prime power modulus (prime p > 2) is analysed. Its cyclic group Gk of units has order (p − 1)p, and all p-th power n residues form a subgroup Fk with |Fk| = |Gk|/p. The subgroup of order p − 1, the core Ak of Gk, extends Fermat’s Small Theorem (FST ) to mod p, consisting of p − 1 residues with n ≡ n mod p. The concept of carry, e.g. n in FST extension n ≡ np + 1 mod p, is crucial in expanding residue arithmetic to integers, and to allow analysis of divisors of 0 mod p. For large enough k ≥ Kp (critical precison Kp < p depends on p), all nonzero pairsums of core residues are shown to be distinct, upto commutation. The known FLT case1 is related to this, and the set Fk + Fk mod p k of p-th power pairsums is shown to cover half of Gk. Yielding main result: each residue mod p is the sum of at most four p-th power residues. Moreover, some results on the generative power (mod p) of divisors of p± 1 are derived. [Publ.: Computers and Mathematics with Applications V39 N7-8 (Apr.2000) p253-261] MSC classes: 11P05, 11D41

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gonality, Apolarity and Hypercubics

We show that any Fermat hypercubic is apolar to a trigonal curve, and vice versa. We show also that the Waring number of the polar hypercubic associated to a tetragonal curve of genus g is at most ⌈ 3 2 g − 7 2 ⌉, and for an important class of them is at most 4 3 g − 5 3 .

متن کامل

HYPERBOLIC HYPERSURFACES IN P n OF FERMAT - WARING TYPE Bernard SHIFFMAN

In this note we show that there are algebraic families of hyperbolic, Fermat-Waring type hypersurfaces in P of degree 4(n− 1)2, for all dimensions n 2. Moreover, there are hyperbolic Fermat-Waring hypersurfaces in P of degree 4n2−2n +1 possessing complete hyperbolic, hyperbolically embedded complements. Many examples have been given of hyperbolic hypersurfaces in P3 (e.g., see [ShZa] and the li...

متن کامل

Hyperbolic Hypersurfaces in P of Fermat-waring Type

In this note we show that there are algebraic families of hyperbolic, FermatWaring type hypersurfaces in P of degree 4(n − 1), for all dimensions n ≥ 2. Moreover, there are hyperbolic Fermat-Waring hypersurfaces in P of degree 4n − 2n + 1 possessing complete hyperbolic, hyperbolically embedded complements. Many examples have been given of hyperbolic hypersurfaces in P (e.g., see [ShZa] and the ...

متن کامل

Motives, modularity, and mirror symmetry

We consider certain families of Calabi-Yau orbifolds and their mirror partners constructed from Fermat hypersurfaces in weighted projective spaces. We use Fermat motives to interpret the topological mirror symmetry phenomenon. These Calabi-Yau orbifolds are defined over Q, and we can discuss the modularity of the associated Galois representations. We address the modularity question at the motiv...

متن کامل

Waring Decompositions of Monomials

A Waring decomposition of a polynomial is an expression of the polynomial as a sum of powers of linear forms, where the number of summands is minimal possible. We prove that any Waring decomposition of a monomial is obtained from a complete intersection ideal, determine the dimension of the set of Waring decompositions, and give the conditions under which the Waring decomposition is unique up t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008